
Globally Distributed SQL
Databases FTW

Henrik Engström
Architect @ Kindred Group

Twitter: @h3nk3
https://speakerdeck.com/h3nk3

https://twitter.com/h3nk3
https://speakerdeck.com/h3nk3

~whois Kindred Group
● 11 gambling brands under one umbrella

○ Started as Unibet in 1997
○ 2018: £908m GWR, £203m EBITDA
○ 25 million users

● Microservice based, event-driven architecture based on Java
● Lots of transactions and data!

○ Example: Kindred vs. PayPal
■ Paypal Q2 in 2019: ~3.1 billion/tx
■ Kindred transactions handled: ~2.7 billion/quarter

● 1500 employees with ~500 in Tech spread over the globe
○ Tech hubs: Stockholm, London, Madrid, Sydney, Belgrade, Malta, Gibraltar

● Kindred is always looking for great engineers

https://www.statista.com/statistics/218495/paypals-net-number-of-payments-per-quarter/
https://www.kindredgroup.com/careers/

~ less henrik_engstrom.txt
First program written in 1984 on an ABC 80

Professional developer since 1998

Consultant in gambling, finance, retail [1998-2010]

Principle Engineer @ Typesafe/Lightbend (Scala/Akka/observability) [2011-2018]

Architect @ Kindred Group [2019-]

henrik_engstrom.txt (END)

~ ls -l agenda

drwxr--r-- 3 root staff Feb 5 2020 Challenges with Data Consistency

drwxr--r-- 3 root staff Feb 5 2020 Data Consistency Definitions

drwxr--r-- 3 root staff Feb 5 2020 Application Tier Consistency

drwxr--r-- 3 root staff Feb 5 2020 NewSQL and CockroachDB

All images in this presentation are from https://www.pexels.com/ unless otherwise stated.

Challenges with Data
Consistency

https://www.pexels.com/

Back in mid 2000s
● CPU single core → multiple cores
● Big monolith HW → Smaller servers
● On-prem → “cloud”
● Distributed systems
● RDBMS and TX → EC and NoSQL
● CAP theorem

CONSISTENCY

CAP - a.k.a. pick your poison

PARTITION
TOLERANCE

AVAILABILITY

CA

CP

AP
X

X

Inevitable :(

CONSISTENCY PARTITION
TOLERANCE AVAILABILITY

CP

AP

Pat Helland’s “Life beyond
distributed TX” quotes

Life beyond Distributed Transactions: an Apostate's Opinion [2007]

http://adrianmarriott.net/logosroot/papers/LifeBeyondTxns.pdf

Pat Helland’s “Life beyond distributed TX” arguments

“Personally, I have invested a non-trivial
portion of my career as a strong advocate

for the implementation and use of platforms
providing guarantees of global

serializability.”
Life beyond Distributed Transactions: an Apostate's Opinion [2007]

http://adrianmarriott.net/logosroot/papers/LifeBeyondTxns.pdf

Pat Helland’s “Life beyond distributed TX” arguments

”In general, application developers simply
do not implement large scalable

applications assuming distributed
transactions. When they attempt to use

distributed transactions, the project founder
because the performance cost and fragility

make them impractical.”
Life beyond Distributed Transactions: an Apostate's Opinion [2007]

http://adrianmarriott.net/logosroot/papers/LifeBeyondTxns.pdf

Pat Helland’s “Life beyond distributed TX” arguments

“In a system which cannot count on
distributed transactions, the management
of uncertainty must be implemented in the

business logic.”

Life beyond Distributed Transactions: an Apostate's Opinion [2007]

http://adrianmarriott.net/logosroot/papers/LifeBeyondTxns.pdf

● Strong Consistency
○ ACID

■ Atomicity - all or nothing
■ Consistency - no violating constraints
■ Isolation - exclusive access
■ Durability - committed data survives crashes

○ Associated with RDBMS

● Eventual Consistency
○ ACID 2.0

■ Associative - Set().add(1).add(2) === Set().add(2).add(1)
■ Commutative - Math.max(1,2) === Math.max(2,1)
■ Idempotent - Map().put(“a”,1).put(“a”,1) === Map().put(“a”,1)
■ Distributed - symbolical meaning

○ Associated with NoSQL

Evolution of Consistency

EASY?

COMPLEX?

Data Consistency
Definitions

Baseball Rules in Code
case class Team(name: String, var points:Int=0) {
 def addPoint(inning: Int, p: Int): Unit = {
 points = points + p
 println(s"[$inning] $name team score $p") // simplified score reporting
 }
}
class Rules {
 val visitors = Team("Visitors")
 val home = Team("Home")
 for (i <- 1 to 9) { // innings
 var outs = 0
 while (outs < 3)
 play() match {
 case s: Score => visitors.addPoint(i, s.points)
 case Out => outs += 1
 }
 outs = 0
 while (outs < 3)
 play() match {
 case s: Score => home.addPoint(i, s.points)
 case Out => outs += 1
 }
 }
 def play(): Result = { // game simulation }
}

Strong Consistency 2-5

Eventual Consistency 0-0, 0-1, 0-2, 0-3, 0-4, 0-5, 1-0, 1-1, 1-2, 1-3, 1-5, 1-4, 2-0, 2-1, 2-2, 2-3,
2-4, 2-5

Consistent Prefix
(~ Snapshot Isolation)

0-0, 0-1, 1-1, 1-2, 1-3, 2-3

Monotonic Reads (after reading 1-3): 1-3, 1-4, 1-5, 2-3, 2-4, 2-5

Read Your Writes (for writer): 2-5
(anyone else): 0-0, 0-1, 0-2, 0-3, 0-4, 0-5, 1-0, 1-1, 1-2, 1-3 ,1-4, 1-5,
2-0, 2-1, 2-2, 2-3, 2-4, 2-5

Let’s Play a Game
1 2 3 4 5 6 7 8 9 RUNS

VISITORS 0 0 1 0 1 0 0 2

HOME 1 0 1 1 0 2 5

Consistency Models Overview

Credit:
Aphyr @ jepsen.io
Peter Bailis @ http://www.bailis.org/blog/linearizability-versus-serializability/

Unavailable (CP)

Sticky available (AP)

Totally available (AP)

https://jepsen.io/consistency
http://www.bailis.org/blog/linearizability-versus-serializability/

Application Tier
Consistency

Challenges
in an EC
World

Image Credits

https://twitter.com/mykola/status/1101337299525267457

Building Highly-Scalable Distributed Systems is Easy

Just sprinkle some of the following onto your design:

● Eventual consistency
● Idempotence
● CQRS
● CRDTs
● The Saga Pattern
● ...and so on…

Also known as “push the hard problems somewhere else”™

NewSQL
● Coined in 2011
● Support the relational model

○ Lessons learned: SQL is pretty good to have and is ubiquitous

● Back to ACID 1.0 again
● Support fault tolerance and horizontal scalability
● Split databases into “chunks” and use Paxos or Raft for consensus
● Example of NewSQL databases:

○ Spanner (Google) - the flagship NewSQL DB
○ Azure Cosmos DB (Microsoft) - multiple consistency levels available
○ CockroachDB

“We believe that it is better to have application
programmers deal with performance problems
due to overuse of transactions as bottlenecks
arise, rather than always coding around the

lack of transactions.”

Spanner: Google’s Globally-Distributed Database [2012]

https://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf

“Within Google, we have found that this [strong
guarantees] has made it significantly easier to develop
applications on Spanner compared to other database
systems with weaker guarantees. When application

developers don’t have to worry about race conditions or
inconsistencies in their data, they can focus on what
they really care about - building and shipping a great

applications.”
Life of Cloud Spanner Reads & Writes

https://cloud.google.com/spanner/docs/whitepapers/life-of-reads-and-writes

Pat Helland’s “Life beyond distributed TX” arguments

“Real world almost-infinite scale
applications would love the luxury of a

global scope of serializability as is promised
by two phase commit and other related

algorithms.”
Life beyond Distributed Transactions: an Apostate's Opinion [2007]

http://adrianmarriott.net/logosroot/papers/LifeBeyondTxns.pdf

CONSISTENCY

CAP Revisited

Spanner, TrueTime & The CAP Theorem [2017]

PARTITION
TOLERANCE

AVAILABILITY

CA

CP

AP

https://ai.google/research/pubs/pub45855

CockroachDB Overview
Formerly open-sourced DB based on and inspired by Spanner concepts.

Some CRDB highlights:

● Distributed, replicated, transactional key-value store
● Uses so-called ranges and Raft for consensus
● No atomic clocks required - uses HLC and NTP
● Geo-distribution capabilities
● Full SQL support - Postgresql dialect
● Built-in Change Data Capture functionality (The Outbox Pattern)
● Jepsen tested and approved
● Cloud native

https://www.cockroachlabs.com/blog/oss-relicensing-cockroachdb/
http://thesecretlivesofdata.com/raft/
https://cse.buffalo.edu/tech-reports/2014-04.pdf
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://debezium.io/blog/2019/02/19/reliable-microservices-data-exchange-with-the-outbox-pattern/
https://jepsen.io/analyses/cockroachdb-beta-20160829

Ranges and Replication
● Ranges

○ Ranges (64MB) are the units of replication
○ Raft for consensus
○ Each range is a Raft group
○ Minimum of 3 nodes required

● Leaseholders - 1 per range
○ Read/write control
○ Follow-the-workload

● Replica Placement Algorithm:
○ Space
○ Diversity
○ Load
○ Latency

● Data is split up into 64MB ranges - each holding a contiguous range of keys
● An index maps from key to range ID

CRDB Replication Layer: Sharding and Index

Ø - lem

RANGE 1

lem - pea

RANGE 2

pea - ∞

RANGE 3

apricot

banana

blueberry

cherry

grape

lemon

lime

mango

peach

pear

raspberry

pineapple

melon

orange strawberry

SHARD INDEX
SHARD INDEX

SHARD INDEX

Ø - lem lem - pea pea - ∞

SHARD INDEX
SHARD INDEX

● Split when range is out of space or too hot

CRDB Replication Layer: Split

SHARD INDEX

Ø - lem lem - pea pea - str

Ø - lem

RANGE 1

lem - pea

RANGE 2

pea - str

RANGE 3

apricot

banana

blueberry

cherry

grape

lemon

lime

mango

peach

pear

raspberry

pineapple

melon

orange

str - ∞

str - ∞

RANGE 4

tamarillo

strawberry

tamarind

CRDB Replication Layer: Placement

NODE 1

Range 1

Range 2

Range 3

NODE 2

Range 1

Range 2

Range 3

NODE 3

Range 1

Range 2

Range 3

CRDB Replication Layer: Rebalancing

NODE 4

NODE 1

Range 1

Range 2

Range 3

NODE 2

Range 1

Range 2

Range 3

NODE 3

Range 1

Range 2

Range 3

CRDB Replication Layer: Rebalancing

NODE 4

NODE 1

Range 1

Range 2

Range 3

NODE 2

Range 1

Range 2

Range 3

NODE 3

Range 1

Range 2

Range 3

Range 3

CRDB Replication Layer: Rebalancing

NODE 4

NODE 1

Range 1

Range 2

Range 3

NODE 2

Range 1

Range 2

Range 3

NODE 3

Range 1

Range 2

Range 3

Range 3

CRDB Replication Layer: Rebalancing

NODE 4

NODE 1

Range 1

Range 2

Range 3

NODE 2

Range 1

Range 2
NODE 3

Range 1

Range 2

Range 3

Range 3

CRDB Replication Layer: Rebalancing

NODE 4

NODE 1

Range 1

Range 2

Range 3

NODE 2

Range 1

Range 2
NODE 3

Range 1

Range 2

Range 3

Range 3

Range 2

CRDB Replication Layer: Rebalancing

NODE 4

NODE 1

Range 1

Range 2

Range 3

NODE 2

Range 1

Range 2
NODE 3

Range 1

Range 2

Range 3

Range 3

Range 2

CRDB Replication Layer: Rebalancing

NODE 4

NODE 1

Range 1

Range 2

Range 3

NODE 2

Range 1

Range 2
NODE 3

Range 1

Range 3

Range 3

Range 2

CRDB Replication Layer: Recovery

NODE 4

NODE 1

Range 1

Range 2

Range 3

NODE 2

Range 1

Range 2
NODE 3

Range 1

Range 3

Range 3

Range 2

NODE 3

CRDB Replication Layer: Recovery

NODE 4

NODE 1

Range 1

Range 2

Range 3

NODE 2

Range 1

Range 2

Range 1

Range 3

Range 3

Range 2

Range 1

Range 2

CRDB Replication Layer: Recovery

NODE 4

NODE 1

Range 1

Range 2

Range 3

NODE 3

Range 1

Range 3

Range 3

Range 2

Range 1

Range 2

Short Digression
About Time

Ordering
● Ordering - A happens before B - implies a notion of time
● Total and Partial Ordering

○ Total - full ordering guarantees: A → B → C and A → B → D
○ Partial - less guarantees: A → B → ?? C or D

A B

D

C

Clock Alternatives for Distributed Systems
● Perfectly Accurate Global Clocks

■ Google’s TrueTime is almost perfect: ~7ms range
● Imperfect Local Clocks

■ Total ordering on the local level - monotonic updates
■ No ordering between nodes
■ More “real-world” like than Google

● No Physical Clocks Available
■ Fallback: use a logical “clock” instead

Logical: Lamport Clock
● A counter incremented when:

○ The process executes
○ The process receives a message

Image credit: https://www.cs.rutgers.edu/~pxk/417/notes/clocks/index.html

https://www.cs.rutgers.edu/~pxk/417/notes/clocks/index.html

Logical: Vector Clock
● A counter incremented when:

○ The process executes
○ The process receives a message using max(local, received)

Image credit: https://www.cs.rutgers.edu/~pxk/417/notes/clocks/index.html

https://www.cs.rutgers.edu/~pxk/417/notes/clocks/index.html

Hybrid Logical Clocks (HLC)

● A combination of physical and logical clocks

Paper and Image credit: https://cse.buffalo.edu/tech-reports/2014-04.pdf

pt: Physical Time
l: Logical Time (keeps max pt seen)
c: Causality

https://cse.buffalo.edu/tech-reports/2014-04.pdf

Geo keys

Geo keys
● Set location when starting node:

cockroach start --locality=region=us-east ...
● Partition by list in table definition:

PARTITION BY LIST (city)
 (PARTITION us-east VALUES IN ('NYC','DC'),
 PARTITION us-central VALUES IN ('Denver', 'SLC'),
 PARTITION us-west VALUES IN ('LA','SF'),
 PARTITION DEFAULT VALUES IN (default));

● Partition by range in table definition:
PARTITION BY RANGE (expected_graduation_date)
 (PARTITION graduated VALUES FROM (MINVALUE) TO ('2017-08-15'),
 PARTITION current VALUES FROM ('2017-08-15') TO (MAXVALUE));

> ALTER PARTITION current OF TABLE students CONFIGURE ZONE USING
constraints='[+ssd]';

CockroachDB and SQL
● Implements a large portion of the ANSI SQL standard
● Uses the PostgreSQL wire protocol

○ PostgreSQL-compatible drivers
○ GORM (GoLang)
○ Hibernate (Java)

● Full ACID support
● Distributed SQL (DistSQL) optimization tool for some queries
● Lots of effort put into performance!

The Dual Writes Problem

DB

KAFKA

SERVICE

TX

Change Data Capture (CDC)

Cockroach
DB

KAFKASERVICE
TX CDC

Challenges with Distributed Systems
● Performance/Latency

○ Going single homed → multi homed always comes with a cost (quorum
price)

○ Some ping time examples
■ Stockholm - Dublin: 61.8 ms
■ New York - Tokyo: 215.9 ms
■ Frankfurt - Singapore: 150.2 ms
■ Sydney - Paris: 281.3 ms

○ CockroachDB mitigation: Use geo-positioning of data
● Observability (reasoning) hard in distributed systems

Conclusions

Questions to Ponder

● What role(s) do you play in the baseball match?
● How scalable do you need to be?
● What does your average engineering profile look like?

○ Remember what Google said about Eventual
Consistency

● How much SQL do use? How much would you like to
use?

● Are you able and willing to use the cloud?
● Let the above guide you to the right solution.

Decide how hot or cold
you need the water

THANK YOU FOR LISTENING

Twitter: @h3nk3
Slides: https://speakerdeck.com/h3nk3

https://twitter.com/h3nk3
https://speakerdeck.com/h3nk3

