cloudstate

Jonas Bonér

“We predict that Serverless Computing will grow
to dominate the future of Cloud Computing.”

Cloud computing simplified: a Berkeley view on serverless computing

FaaS = Function-as-a-Service

18)

NARY

FaaS = Function-as-a-Service

THE WAY

FaaS = Function-as-a-Service

THE WAY

FIRST STEP

FaaS = Function-as-a-Service

SERVERLESS FAAS

USE-GASES

FAAS

USE-GASES

FAAS

throughput is key
completed in a short time

USE-GASES

FAAS

throughput is key
completed in a short time

Embarrassingly parallel processing tasks

Low traffic applications
Stateless web applications
Orchestration functions
Composing chains of functions

Job scheduling

FAAS: HARD TO BUILD

FAAS: HARD T0 BUILD

expensive to lose computational context

Durable state “somewhere else”

No co-location

No direct addressability
managing & coordinating distributed state
modelling data consistency guarantees

%f,

N
Qb

\

%f,

N
Qb

\

Managing in-memory durable session state across individual requests

Managing in-memory durable session state across individual requests

Low-latency serving of dynamic in-memory models

Managing in-memory durable session state across individual requests
Low-latency serving of dynamic in-memory models

Real-time stream processing

Managing in-memory durable session state across individual requests
Low-latency serving of dynamic in-memory models
Real-time stream processing

Distributed resilient transactional workflows

Managing in-memory durable session state across individual requests
Low-latency serving of dynamic in-memory models
Real-time stream processing

Distributed resilient transactional workflows

Shared collaborative workspaces

Managing in-memory durable session state across individual requests
Low-latency serving of dynamic in-memory models
Real-time stream processing

Distributed resilient transactional workflows

Shared collaborative workspaces

Leader election, counting, voting

N
\\S

Stateful long-lived addressable virtual components

Stateful long-lived addressable virtual components

Options for distributed coordination and communication patterns

Stateful long-lived addressable virtual components
Options for distributed coordination and communication patterns

Options for managing distributed state reliably at scale

Stateful long-lived addressable virtual components
Options for distributed coordination and communication patterns
Options for managing distributed state reliably at scale

Intelligent adaptive placement of stateful functions

Stateful long-lived addressable virtual components

Options for distributed coordination and communication patterns
Options for managing distributed state reliably at scale
Intelligent adaptive placement of stateful functions

Predictable performance, latency, and throughput

Stateful long-lived addressable virtual components

Options for distributed coordination and communication patterns
Options for managing distributed state reliably at scale
Intelligent adaptive placement of stateful functions

Predictable performance, latency, and throughput

Ways of managing end-to-end guarantees and correctness

=
T I
S| S
m =
S et
o ==
a2l &

e }

DEPLOYMENT

_—
—
—
(-
-
-
Ll
(= =
L]
(7c]
e |

\

MESSAGE OUT

=
= —
o x
— =
= -
m | .
L o
=2 ()

—1

WA
\

N\

T
—
Ll
—
S
S
L
.
Ll
=

MESSAGE OUT

USER FUNCTION

T
—
Ll
—
S
S
L
.
Ll
=

MESSAGE OUT

USER FUNCTION

DATABASE

DEPLOYMENT

USER FUNCTION MESSAGE OUT

)\ 4

N

W

Z
=

,///V././///////

THE FUNCTION IS A

BLACK BOX

N

W

Z
=

\

UNCONSTRAINED

DATABASE ACCESS

MAKES IT HARD TO

AUTOMATE
OPERATIONS

“Freedom Is not so much the abhsence
of restrictions as finding the right ones,
the liberating restrictions.”

DEPLOYMENT

USER FUNCTION

DEPLOYMENT

USER FUNCTION

DEPLOYMENT
MESSAGE OUT

USER FUNCTION

DEPLOYMENT

—
-
o
L]
(=)
=T
[
(7.
L
—

USER FUNCTION

DEPLOYMENT

—
-
o
L]
(=)
=T
[
(7.
L
—

USER FUNCTION

T
—
Ll
—
=
(=]
L
.
Ll
=

MESSAGE OUT

USER FUNCTION

STATE OUT

o

cloudstate

CLOUDSTATE

https://cloudstate.io

CLOUDSTATE

https://cloudstate.io

Open Source

CLOUDSTATE

https://cloudstate.io

Open Source
Makes Stateful Serverless easy

CLOUDSTATE

https://cloudstate.io

Open Source
Makes Stateful Serverless easy
Reference implementation

CLOUDSTATE

https://cloudstate.io

Open Source
Makes Stateful Serverless easy
Reference implementation
focus on business logic datamodel workflow

CLOUDSTATE

https://cloudstate.io

CLOUDSTATE

https://cloudstate.io

Complexities Distributed Concurrent

CLOUDSTATE

https://cloudstate.io

Complexities Distributed Concurrent
Distributed State Consistency, Replication, Persistence

CLOUDSTATE

https://cloudstate.io

Complexities Distributed Concurrent
Distributed State Consistency, Replication, Persistence
Databases, Service Meshes,

CLOUDSTATE

https://cloudstate.io

Complexities Distributed Concurrent

Distributed State Consistency, Replication, Persistence
Databases, Service Meshes,

Message Routing, Scalability, Fail-over Recovery

CLOUDSTATE

https://cloudstate.io

Complexities Distributed Concurrent

Distributed State Consistency, Replication, Persistence

Databases, Service Meshes,

Message Routing, Scalability, Fail-over Recovery
Running Operating

CLOUDSTATE

https://cloudstate.io

CLOUDSTATE

https://cloudstate.io

Polyglot: JavaScript, Java, Go
Python, .NET, Rust, Swift, Scala

CLOUDSTATE

https://cloudstate.io

Polyglot: JavaScript, Java, Go
Python, .NET, Rust, Swift, Scala
PolyState: Event Sourcing, CRDTs, Key Value

CLOUDSTATE

https://cloudstate.io
Polyglot: JavaScript, Java, Go
Python, .NET, Rust, Swift, Scala
PolyState: Event Sourcing, CRDTs, Key Value

PolyDB: SQL, NoSQL, NewSQL

CLOUDSTATE

https://cloudstate.io
Polyglot: JavaScript, Java, Go
Python, .NET, Rust, Swift, Scala
PolyState: Event Sourcing, CRDTs, Key Value
PolyDB: SAL, NoSQL, NewSQL

Akka, gRPC, Knative, GraalVM, Kubernetes

ARCHITECTURE

ARCHITECTURE

ARCHITECTURE

KUBERNETES POD

KUBERNETES POD

KUBERNETES POD

ARCHITECTURE

KUBERNETES POD

CLOUDSTATE PROXY ! KUBERNETES POD

(AKKA SIDECAR)

KUBERNETES POD

ARCHITECTURE

KUBERNETES POD

CLOUDSTATE PROXY ! KUBERNETES POD

(AKKA SIDECAR)

KUBERNETES POD

ARCHITECTURE

KUBERNETES POD

CLOUDSTATE PROXY . BEETES OD
(AKKA SIDECAR) 6o, Java....

KUBERNETES POD

ARCHITECTURE

KUBERNETES POD

CLOUDSTATE PROXY . BEETES OD
(AKKA SIDECAR) 6o, Java....

KUBERNETES POD

DATASTORE

(Cassandra, Postgres, Spanner,...)

KUBERNETES POD

KUBERNETES POD

KUBERNETES POD

=

cloudstate

AKKA SIDECAR . KUBERNETES POD

AKKA SIDECAR) KUBERNETES POD
AKKA SIDECAR . KUBERNETES POD

=

cloudstate

KUBERNETES POD

KUBERNETES POD

KUBERNETES POD

=

cloudstate

KUBERNETES POD

KUBERNETES POD

KUBERNETES POD

=

cloudstate

KUBERNETES POD

KUBERNETES POD

KUBERNETES POD

=

cloudstate

KUBERNETES POD

KUBERNETES POD

KUBERNETES POD

=

cloudstate

KUBERNETES POD

KUBERNETES POD

KUBERNETES POD

=

cloudstate

KUBERNETES POD

KUBERNETES POD

KUBERNETES POD

DATASTORE

(Cassandra, Postgres, Spanner,...)

=

cloudstate

KUBERNETES POD

KUBERNETES POD

KUBERNETES POD

DATASTORE

(Cassandra, Postgres, Spanner,...)

=

cloudstate

KUBERNETES POD

KUBERNETES POD

KUBERNETES POD

DATASTORE

(Cassandra, Postgres, Spanner,...)

HELPS YOU WITH

HELPS YOU WITH

Pay-as-you-go:
Instance Creation Passivation Failover

Autoscaling

HELPS YOU WITH

Pay-as-you-go:
Instance Creation Passivation Failover

Autoscaling

LeroOps:
Message Routing and Delivery

State Management

Service of Record Cluster Sharding, Co-location of Data & Processing
Coordination State

Deployment, Provisioning, Upgrades

AKKA CLUSTER

AKKA CLUSTER

AKKA SIDECAR

AKKA SIDECAR
AKKA SIDECAR

AKKA SIDECAR

AKKA SIDECAR

AKKA SIDECAR

AKKA SIDECAR

AKKA CLUSTER

lll
* *

AKKA CLUSTER

AKKA SIDECAR b | AKKA SIDECAR

A AKKA SIDECAR AKKASIDECAR |

AKKA SIDECAR
\» AKKA SIDECAR /

. .
. .
--

AKKA SIDECAR

AKKA CLUSTER

lll
* *

AKKA CLUSTER

= 8
: / \ : Actor-based Distributed Runtime
Decentralized Masterless P2P

I I Epidemic Gossiping, Self-healing

AKKA SIDECAR
\» AKKA SIDECAR /

. .
. .
--

AKKA SIDECAR

AKKA CLUSTER

lll
* *

AKKA CLUSTER

5
AKKA SIDECAR -

USER FUNCTION

AKKA SIDECAR +—>

'/
AKKA SIDECAR

\ Actor-based Distributed Runtime
AKKA SIDECAR : Decentralized Masterless P2P
: Epidemic Gossiping, Self-healing

AKKA SIDECAR -

I
: AKKA SIDECAR

N
AKKA SIDECAR

. .
. .
--

AKKA CLUSTER

lll
* *

AKKA CLUSTER

USER FUNCTION

AKKA SIDECAR

AKKA SIDECAR

'/
AKKA SIDECAR

+“—>

\ Actor-based Distributed Runtime
AKKA SIDECAR : Decentralized Masterless P2P
Epidemic Gossiping, Self-healing

: AKKA SIDECAR AKKA SIDECAR -

N
AKKA SIDECAR

. .
. .
--

State Sharding & Routing on Entity Key

AKKA CLUSTER

lll
* *

AKKA CLUSTER

USER FUNCTION

AKKA SIDECAR

AKKA SIDECAR

'/
AKKA SIDECAR

+“—>

\ Actor-based Distributed Runtime
AKKA SIDECAR : Decentralized Masterless P2P
Epidemic Gossiping, Self-healing

: AKKA SIDECAR AKKA SIDECAR -

N
AKKA SIDECAR

. .
. .
--

State Sharding & Routing on Entity Key

AKKA CLUSTER

lll
* *

AKKA CLUSTER

USER FUNCTION

USER FUNCTION

AKKA SIDECAR

'/
AKKA SIDECAR

+—> AKKA SIDECAR

\ Actor-based Distributed Runtime
AKKA SIDECAR : Decentralized Masterless P2P
Epidemic Gossiping, Self-healing

I I
: AKKA SIDECAR AKKA SIDECAR

N
AKKA SIDECAR

. .
. .
--

State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)

AKKA CLUSTER

lll
* *

AKKA CLUSTER

USER FUNCTION

USER FUNCTION

AKKA SIDECAR

'/
AKKA SIDECAR

+—> AKKA SIDECAR

\ Actor-based Distributed Runtime
AKKA SIDECAR : Decentralized Masterless P2P
Epidemic Gossiping, Self-healing

I I
: AKKA SIDECAR AKKA SIDECAR

N
AKKA SIDECAR

. .
. .
--

State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)

AKKA CLUSTER

lll
* *

AKKA CLUSTER

USER FUNCTION

USER FUNCTION

AKKA SIDECAR -—> AKKA SIDECAR :
AKKA SIDECAR AKKA SIDECAR

I I
: AKKA SIDECAR AKKA SIDECAR

N
AKKA SIDECAR

. .
. .
--

Actor-based Distributed Runtime
Decentralized Masterless P2P
Epidemic Gossiping, Self-healing

State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)
Co-Location of State & Processing

AKKA CLUSTER

lll
* *

AKKA CLUSTER

USER FUNCTION

USER FUNCTION

AKKA SIDECAR

'/
AKKA SIDECAR

+—> AKKA SIDECAR

AKKA SIDECAR

I I
: AKKA SIDECAR AKKA SIDECAR

N
AKKA SIDECAR

. .
. .
--

\

USER FUNCTION -

Actor-based Distributed Runtime
Decentralized Masterless P2P
Epidemic Gossiping, Self-healing

State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)
Co-Location of State & Processing
Backed by Event Log

AKKA CLUSTER

lll
* *

AKKA CLUSTER

USER FUNCTION

USER FUNCTION

AKKA SIDECAR

'/
AKKA SIDECAR

+—> AKKA SIDECAR

AKKA SIDECAR

I
AKKA SIDECAR

AKKA SIDECAR

4 L 4
L 4 .
lllllllllllllllllllllllllllllllllllll iEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEEEn®

I
: AKKA SIDECAR

EVENT LOG

\

USER FUNCTION -

Actor-based Distributed Runtime
Decentralized Masterless P2P
Epidemic Gossiping, Self-healing

State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)
Co-Location of State & Processing
Backed by Event Log

AKKA CLUSTER

lll
* *

AKKA CLUSTER

USER FUNCTION

USER FUNCTION

AKKA SIDECAR

'/
AKKA SIDECAR

+—> AKKA SIDECAR

AKKA SIDECAR

I
AKKA SIDECAR

AKKA SIDECAR

4 L 4
L 4 .
lllllllllllllllllllllllllllllllllllll iEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEEEn®

I
: AKKA SIDECAR

EVENT LOG

\

USER FUNCTION -

Actor-based Distributed Runtime
Decentralized Masterless P2P
Epidemic Gossiping, Self-healing

State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)
Co-Location of State & Processing
Backed by Event Log

Automatic Failover, Rehydration, and
Rebalancing

AKKA SIDECAR

AKKA CLUSTER

lll
* *

AKKA CLUSTER

USER FUNCTION

USER FUNCTION

AKKA SIDECAR

/ USER FUNCTION

+—> AKKA SIDECAR

AKKA SIDECAR

I
AKKA SIDECAR

I
AKKA SIDECAR

USER FUNCTION

. .
. .
--

EVENT LOG

\

USER FUNCTION -

Actor-based Distributed Runtime
Decentralized Masterless P2P
Epidemic Gossiping, Self-healing

State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)
Co-Location of State & Processing
Backed by Event Log

Automatic Failover, Rehydration, and
Rebalancing

AKKA CLUSTER

lll
* *

AKKA CLUSTER

USER FUNCTION

USER FUNCTION

AKKA SIDECAR

'/
AKKA SIDECAR

: AKKA SIDECAR < >

+—> AKKA SIDECAR

AKKA SIDECAR

I
AKKA SIDECAR

. .
. .
--

EVENT LOG

\

USER FUNCTION -

Actor-based Distributed Runtime
Decentralized Masterless P2P
Epidemic Gossiping, Self-healing

State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)
Co-Location of State & Processing
Backed by Event Log

Automatic Failover, Rehydration, and
Rebalancing

AKKA CLUSTER

lll
* *

AKKA CLUSTER

USER FUNCTION

USER FUNCTION

AKKA SIDECAR

'/
AKKA SIDECAR

: AKKA SIDECAR < >

+—> AKKA SIDECAR

AKKA SIDECAR

I
AKKA SIDECAR

. .
. .
--

EVENT LOG

\

USER FUNCTION -

Actor-based Distributed Runtime
Decentralized Masterless P2P
Epidemic Gossiping, Self-healing

State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)
Co-Location of State & Processing
Backed by Event Log

Automatic Failover, Rehydration, and
Rebalancing

AKKA CLUSTER

lll
* *

AKKA CLUSTER

AKKA SIDECAR

AKKA SIDECAR -—> AKKA SIDECAR
/ \
AKKA SIDECAR

I
AKKA SIDECAR

: AKKA SIDECAR < >

. .
. .
--

EVENT LOG

Actor-based Distributed Runtime
Decentralized Masterless P2P
Epidemic Gossiping, Self-healing

State Sharding & Routing on Entity Key
Forwarding of Requests (if needed)
Co-Location of State & Processing
Backed by Event Log

Automatic Failover, Rehydration, and
Rebalancing

AKKA SIDECAR

AKKA CLUSTER

lll
* *

AKKA CLUSTER

USER FUNCTION

USER FUNCTION

+—> AKKA SIDECAR

AKKA SIDECAR

/ USER FUNCTION

AKKA SIDECAR

N
AKKA SIDECAR

. .
. .
--

\

USER FUNCTION -

I I
AKKA SIDECAR AKKA SIDECAR

In-memory Replication of State
Gossiping State Changes

Using CRDTs

State Merged on Local Node
Highly Available (N Replicas)
Very Scalable

AKKA SIDECAR

AKKA CLUSTER

lll
* *

AKKA CLUSTER

USER FUNCTION

USER FUNCTION

+—> AKKA SIDECAR

AKKA SIDECAR

/ USER FUNCTION

AKKA SIDECAR

N
AKKA SIDECAR

. .
. .
--

\

USER FUNCTION -

I I
AKKA SIDECAR AKKA SIDECAR

In-memory Replication of State
Gossiping State Changes

Using CRDTs

State Merged on Local Node
Highly Available (N Replicas)
Very Scalable

AKKA SIDECAR

AKKA CLUSTER

lll
* *

AKKA CLUSTER

USER FUNCTION

USER FUNCTION

+—> AKKA SIDECAR

AKKA SIDECAR

/ USER FUNCTION

AKKA SIDECAR

N
AKKA SIDECAR

. .
. .
--

\

USER FUNCTION -

I I
AKKA SIDECAR AKKA SIDECAR

In-memory Replication of State
Gossiping State Changes

Using CRDTs

State Merged on Local Node
Highly Available (N Replicas)
Very Scalable

AKKA SIDECAR

AKKA CLUSTER

lll
* *

AKKA CLUSTER

USER FUNCTION

USER FUNCTION

+—> AKKA SIDECAR

AKKA SIDECAR

/ USER FUNCTION

AKKA SIDECAR

N
AKKA SIDECAR

. .
. .
--

\

USER FUNCTION -

I I
AKKA SIDECAR AKKA SIDECAR

In-memory Replication of State
Gossiping State Changes

Using CRDTs

State Merged on Local Node
Highly Available (N Replicas)
Very Scalable

S

\

N

N DN

BATTLE-TESTED, YET CONSTRAINED, MODELS LIKE

S

\

N

N DN

BATTLE-TESTED, YET CONSTRAINED, MODELS LIKE

CRDTs

Event
sourcing

CRDTs v

Event
sourcing

NN
A\

HAPPY PATH

8

HAPPY PATH

NN
A\

HAPPY PATH

HAPPY PATH

HAPPY PATH

EVENT

..

\
NN
N A

HAPPY PATH

-
—
L
—
L

HAPPY PATH

NN
A\

HAPPY PATH

NN
\ M,O////,

A

SAD PATH, RECOVER FROM FAILURE

SAD PATH, RECOVER FROM FAILURE

d N\

(7]
o
P
Ll
—]
Ll
—
=T
|
(=
Ll
o

SAD PATH, RECOVER FROM FAILURE

d N\

REPLAY EVENTS

SAD PATH, RECOVER FROM FAILURE

\

ALL HISTORY

SOURCE OF TRUTH

*

ALL HISTORY

SOURCE OF TRUTH
MEMORY IMAGE

*
*

ALL HISTORY

SOURCE OF TRUTH
MEMORY IMAGE

*

OBJECT-RELATIONAL MISMATCH

ALL HISTORY

SOURCE OF TRUTH
MEMORY IMAGE

*

OBJECT-RELATIONAL MISMATCH

SUBSCRIBE TO STATE CHANGES

ALL HISTORY

SOURCE OF TRUTH
MEMORY IMAGE

*

OBJECT-RELATIONAL MISMATCH

SUBSCRIBE TO STATE CHANGES

MECHANICAL SYMPATHY

*

T
—
Ll
—
=
S
L
(=
Ll
=

7
/.:
i p

T
—
Ll
—
=
S
L
.
Ll
=

USER FUNCTION/ENTITY

DEPLOYMENT

]
=
—
P
Ll
N
P
=
—
[}
P
—_
| .
o
Ll
w
-

EVENT LOG IN

DEPLOYMENT

USER FUNCTION/ENTITY

EVENT LOG IN

[—
-
o
=
(=
L
(= =

DEPLOYMENT
USER FUNCTION/ENTITY

WA

EVENT LOG IN

DEPLOYMENT

[—
-
o
=
(=
L
(= =

USER FUNCTION/ENTITY

EVENTS OUT

EVENT LOG IN

DEPLOYMENT

[—
-
o
=
(=
L
(= =

USER FUNCTION/ENTITY

EVENTS OUT

EVENT LOG IN

ONFLICT-FREE EPLICATED ATA YPES

G R D

GRDT

Convergent & Commutative Replicated Data Types - Shapiro et. al. 2011

G R D

GRDT

Convergent & Commutative Replicated Data Types - Shapiro et. al. 2011

G R | AIAN |

c R DT DATA TYPES

Convergent & Commutative Replicated Data Types - Shapiro et. al. 2011

CRDTs are

CRDTs are

Batch-insensitive
(grouping doesn't matter)

CRDTs are

Batch-insensitive Order-insensitive
(grouping doesn't matter) (order doesn't matter)

CRDTs are

Batch-insensitive Order-insensitive Retransmission-insensitive
(grouping doesn't matter) (order doesn't matter) (duplication does not matter)

AN
R W

\
\

W

N\

\

T
—
Ll
—
=
S
L
(=
Ll
=

T
—
Ll
—
=
S
L
.
Ll
=

USER FUNCTION/ENTITY

DEPLOYMENT

]
=
—
P
Ll
N
P
=
—
[}
P
—_
| .
o
Ll
w
-

STATES/DELTAS IN

DEPLOYMENT

]
=
—
P
Ll
N
P
=
—
[}
P
—_
| .
o
Ll
w
-

STATES/DELTAS IN

MESSAGE OUT

]
=
[—
=
[—
= =
m S
[—
m (30
o =
(=] (e
o
LLl
N
—

STATES/DELTAS IN

MESSAGE OUT
STATES/DELTAS OUT

]
=
[—
=
[—
= =
m S
[—
m (30
o =
(=] (e
o
LLl
N
—

STATES/DELTAS IN

MESSAGE OUT
STATES/DELTAS OUT

]
=
[—
=
[—
= =
m S
[—
m (30
o =
(=] (e
o
LLl
N
—

STATES/DELTAS IN

T
—
Ll
—
=
S
L
(=
Ll
=

)
=
—
=
[—
= -
m S
T—
m (30
o =
(=] (e
o
LLl
N
—

]
=
—
=
[—
= =
m S
T—
m (30
o =
(=] (e
o
LLl
N
—

SNAPSHOT IN
(BY ENTITY KEY)

]
=
—
=
[—
= =
m S
T—
m (30
o =
(=] (e
o
LLl
N
—

SNAPSHOT IN
(BY ENTITY KEY)

DEPLOYMENT

[—
-
o
L]
(=)
=T
(7]
w
[
—

USER FUNCTION/ENTITY

SNAPSHOT IN

(BY ENTITY KEY)

T
—
Ll
—
=
(=]
L
.
Ll
=

MESSAGE OUT

USER FUNCTION/ENTITY

SNAPSHOT OUT

SNAPSHOT IN
(BY ENTITY KEY)

(BY ENTITY KEY)

PRESENCE FUNCTION IN A GHAT APP

java-chat

github.com/cloudstateio/samples

Protobuf Descriptor

syntax = "proto3"; Protobuf Descriptor
import "cloudstate/entity_key.proto"; P

package cloudstate.samples.chat.presence;

option java_package = "io.cloudstate.samples.chat.presence";
option java_outer_classname = "PresenceProtos";

syntax = "proto3"; Protobuf Descriptor
import "cloudstate/entity_key.proto"; P

package cloudstate.samples.chat.presence;

option java_package = "io.cloudstate.samples.chat.presence";
option java_outer_classname = "PresenceProtos";

message User {
// Entity key is the unique entity/function identifier
string name = 1 [(.cloudstate.entity_key) = truel;

}

message OnlineStatus {
bool online = 1;

}

message Empty {

}.

syntax = "proto3"; Protobuf Descriptor
import "cloudstate/entity_key.proto"; P

package cloudstate.samples.chat.presence;

option java_package = "io.cloudstate.samples.chat.presence";
option java_outer_classname = "PresenceProtos";

message User {
// Entity key is the unique entity/function identifier
string name = 1 [(.cloudstate.entity_key) = truel;

}

message OnlineStatus {
bool online = 1;

}

message Empty {

}.

service Presence {

// Connect the given user
rpc Connect(User) returns (stream Empty);

// Monitor the online status of the given user
rpc Monitor(User) returns (stream OnlineStatus);

}

CRDT Entity

@CrdtEntity CRDT Entity

public class PresenceEntity {
private final Vote vote; // Vote CRDT for this user. It’s auto replicated
// and keeps track how each node has voted
private final String username; // Entity Key (for sharding and routing)

public PresenceEntity(
Optional<Vote> vote, CrdtCreationContext ctx, @EntityId String username) { .. }

@CrdtEntity CRDT Entity

public class PresenceEntity {
private final Vote vote; // Vote CRDT for this user. It’s auto replicated
// and keeps track how each node has voted
private final String username; // Entity Key (for sharding and routing)

public PresenceEntity(
Optional<Vote> vote, CrdtCreationContext ctx, @EntityId String username) { .. }

public static void main(String... args) {
new CloudState()
.registerCrdtEntity(..)
.start();

CRDT Entity

// Vote CRDT for this user. It’s auto replicated
// and keeps track how each node has voted

private final String username; // Entity Key (for sharding and routing)

@CrdtEntity
public class PresenceEntity {

private final Vote vote;

public PresenceEntity(
Optional<Vote> vote, CrdtCreationContext ctx, @EntityId String username) { .. }

public static void main(String... args) {
new CloudState()
.registerCrdtEntity(..)

.start();

}

// Here we implement the Protobuf Service API, our business logic

@CommandHandler
public void connect(StreamedCommandContext<Empty> ctx) {

vote.vote(true);

CRDT Entity

// Vote CRDT for this user. It’s auto replicated
// and keeps track how each node has voted

private final String username; // Entity Key (for sharding and routing)

@CrdtEntity
public class PresenceEntity {

private final Vote vote;

public PresenceEntity(
Optional<Vote> vote, CrdtCreationContext ctx, @EntityId String username) { .. }

public static void main(String... args) {
new CloudState()
.registerCrdtEntity(..)

.start();

}

// Here we implement the Protobuf Service API, our business logic

@CommandHandler
public void connect(StreamedCommandContext<Empty> ctx) {

vote.vote(true);

} ”

@CommandHandler
public OnlineStatus monitor(StreamedCommandContext<OnlineStatus> ctx) {

ctx.onChange(change — {

Run in Kubernetes

Run in Kubernetes

Install Cloudstate
Kubectl create namespace cloudstate

Run in Kubernetes

Install Cloudstate
Kubectl create namespace cloudstate

kubectl apply -n cloudstate -f https://github.com/
cloudstateio/cloudstate/releases/download/v0.4/
cloudstate-0.4.yaml

Install Cloudstate Run in Kubernetes

Kubectl create namespace cloudstate

kubectl apply -n cloudstate -f https://github.com/
cloudstateio/cloudstate/releases/download/v0.4/
cloudstate-0.4.yaml

Install our Presence app and Gateway
kubectl apply -f https://raw.githubusercontent.com/

cloudstateio/samples-java-chat/master/deploy/
presence.yaml

Install Cloudstate Run in Kubernetes

Kubectl create namespace cloudstate

kubectl apply -n cloudstate -f https://github.com/
cloudstateio/cloudstate/releases/download/v0.4/
cloudstate-0.4.yaml

Install our Presence app and Gateway
kubectl apply -f https://raw.githubusercontent.com/

cloudstateio/samples-java-chat/master/deploy/
presence.yaml

kubectl apply -f https://raw.githubusercontent.com/
cloudstateio/samples-java-chat/master/deploy/

gateway.yaml

Install Cloudstate Run in Kubernetes

Kubectl create namespace cloudstate

kubectl apply -n cloudstate -f https://github.com/
cloudstateio/cloudstate/releases/download/v0.4/
cloudstate-0.4.yaml

Install our Presence app and Gateway
kubectl apply -f https://raw.githubusercontent.com/

cloudstateio/samples-java-chat/master/deploy/
presence.yaml

kubectl apply -f https://raw.githubusercontent.com/
cloudstateio/samples-java-chat/master/deploy/

gateway.yaml

Scale up the app to 3 nodes
kubectl scale deploy/presence-deployment —--replicas 3

\

N

cloudstate

