
Jonas Bonér
@jboner

Towards
Stateful
Serverless

“We predict that Serverless Computing will grow
to dominate the future of Cloud Computing.”

- Berkeley CS Department

Cloud computing simplified: a Berkeley view on serverless computing

FaaS

FaaS = Function-as-a-Service

Is visionary
FaaS

FaaS = Function-as-a-Service

Is visionary
Paved the way

FaaS

FaaS = Function-as-a-Service

Is visionary
Paved the way
Just the first step

FaaS

FaaS = Function-as-a-Service

Serverless ≠Faas

good use-cases
For FaaS?

good use-cases
For FaaS?

Use-cases where throughput is key rather than low latency
and requests can be completed in a short time window

good use-cases
For FaaS?

1. Embarrassingly parallel processing tasks—invoked on demand & intermittently,
examples include: image processing, object recognition, log analysis

2. Low traffic applications—enterprise IT services, and spiky workloads
3. Stateless web applications—serving static content form S3 (or similar)
4. Orchestration functions—integration/coordination of calls to third-party services
5. Composing chains of functions—stateless workflow management, connected via
data dependencies

6. Job scheduling—CRON jobs, triggers, etc.

Use-cases where throughput is key rather than low latency
and requests can be completed in a short time window

FAAS: Hard to build
General-Purpose Applications

1. Functions are stateless, ephemeral, short-lived:
expensive to lose computational context & rehydrate

2. Durable state is always “somewhere else”
3. No co-location of state and processing
4. No direct addressability—all communication over external storage
5. Limited options for managing & coordinating distributed state
6. Limited options for modelling data consistency guarantees

FAAS: Hard to build
General-Purpose Applications

State

We Need Serverless Support For...

We Need Serverless Support For...

In short:

General-purpose

applications

• Managing in-memory durable session state across individual requests
E.g. User Sessions, Shopping Carts, Caching

We Need Serverless Support For...

In short:

General-purpose

applications

• Managing in-memory durable session state across individual requests
E.g. User Sessions, Shopping Carts, Caching

• Low-latency serving of dynamic in-memory models
E.g. Serving of Machine Learning Models

We Need Serverless Support For...

In short:

General-purpose

applications

• Managing in-memory durable session state across individual requests
E.g. User Sessions, Shopping Carts, Caching

• Low-latency serving of dynamic in-memory models
E.g. Serving of Machine Learning Models

• Real-time stream processing
E.g. Recommendation, Anomaly Detection, Prediction Serving

We Need Serverless Support For...

In short:

General-purpose

applications

• Managing in-memory durable session state across individual requests
E.g. User Sessions, Shopping Carts, Caching

• Low-latency serving of dynamic in-memory models
E.g. Serving of Machine Learning Models

• Real-time stream processing
E.g. Recommendation, Anomaly Detection, Prediction Serving

• Distributed resilient transactional workflows
E.g. Saga Pattern, Workflow Orchestration, Rollback/Compensating Actions

We Need Serverless Support For...

In short:

General-purpose

applications

• Managing in-memory durable session state across individual requests
E.g. User Sessions, Shopping Carts, Caching

• Low-latency serving of dynamic in-memory models
E.g. Serving of Machine Learning Models

• Real-time stream processing
E.g. Recommendation, Anomaly Detection, Prediction Serving

• Distributed resilient transactional workflows
E.g. Saga Pattern, Workflow Orchestration, Rollback/Compensating Actions

• Shared collaborative workspaces
E.g. Collaborative Document Editing, Blackboards, Chat Rooms

We Need Serverless Support For...

In short:

General-purpose

applications

• Managing in-memory durable session state across individual requests
E.g. User Sessions, Shopping Carts, Caching

• Low-latency serving of dynamic in-memory models
E.g. Serving of Machine Learning Models

• Real-time stream processing
E.g. Recommendation, Anomaly Detection, Prediction Serving

• Distributed resilient transactional workflows
E.g. Saga Pattern, Workflow Orchestration, Rollback/Compensating Actions

• Shared collaborative workspaces
E.g. Collaborative Document Editing, Blackboards, Chat Rooms

• Leader election, counting, voting
…and other distributed systems patterns/protocols for coordination

We Need Serverless Support For...

In short:

General-purpose

applications

Technical Requirements

1. Stateful long-lived addressable virtual components
Actors

Technical Requirements

1. Stateful long-lived addressable virtual components
Actors

2. Options for distributed coordination and communication patterns
Pub-Sub, Point-To-Point, Broadcast—CRDTs, Sagas, etc.

Technical Requirements

1. Stateful long-lived addressable virtual components
Actors

2. Options for distributed coordination and communication patterns
Pub-Sub, Point-To-Point, Broadcast—CRDTs, Sagas, etc.

3. Options for managing distributed state reliably at scale
Ranging from strong to eventual consistency (durable/ephemeral)

Technical Requirements

1. Stateful long-lived addressable virtual components
Actors

2. Options for distributed coordination and communication patterns
Pub-Sub, Point-To-Point, Broadcast—CRDTs, Sagas, etc.

3. Options for managing distributed state reliably at scale
Ranging from strong to eventual consistency (durable/ephemeral)

4. Intelligent adaptive placement of stateful functions
Physical co-location of state and processing, sharding, and sticky routing

Technical Requirements

1. Stateful long-lived addressable virtual components
Actors

2. Options for distributed coordination and communication patterns
Pub-Sub, Point-To-Point, Broadcast—CRDTs, Sagas, etc.

3. Options for managing distributed state reliably at scale
Ranging from strong to eventual consistency (durable/ephemeral)

4. Intelligent adaptive placement of stateful functions
Physical co-location of state and processing, sharding, and sticky routing

5. Predictable performance, latency, and throughput
In startup time, communication/coordination, and storage of data

Technical Requirements

1. Stateful long-lived addressable virtual components
Actors

2. Options for distributed coordination and communication patterns
Pub-Sub, Point-To-Point, Broadcast—CRDTs, Sagas, etc.

3. Options for managing distributed state reliably at scale
Ranging from strong to eventual consistency (durable/ephemeral)

4. Intelligent adaptive placement of stateful functions
Physical co-location of state and processing, sharding, and sticky routing

5. Predictable performance, latency, and throughput
In startup time, communication/coordination, and storage of data

6. Ways of managing end-to-end guarantees and correctness

Technical Requirements

User Function

Deployment

FaaS Is Great At
Abstracting Over
Communication

Message In User Function

Deployment

FaaS Is Great At
Abstracting Over
Communication

Message In User Function

Deployment

Message Out

FaaS Is Great At
Abstracting Over
Communication

Message In User Function

Deployment

Message Out

FaaS With CRUD

Message In User Function

Deployment

Database

Message Out

FaaS With CRUD

Message In User Function

Deployment

Database

Message Out

Not Serverless
Leaky Abstraction

The Problem

The Function is a

Black BoX

The Problem

The Problem

Unconstrained
database access
Makes it hard to

Automate
operations

The Problem

“Freedom is not so much the absence
of restrictions as finding the right ones,

the liberating restrictions.”
- Timothy keller

User Function

Deployment

FaaS
Abstracting Over
Communication

Message In

User Function

Deployment

FaaS
Abstracting Over
Communication

Message In

User Function

Deployment

Message Out

FaaS
Abstracting Over
Communication

Message In

User Function

Deployment

Message Out

Stateful Serverless
Abstracting Over State

Message In

User Function

Deployment

Message Out

Stateful Serverless
Abstracting Over State

State In

Message In

User Function

Deployment

Message Out

Stateful Serverless
Abstracting Over State

State In State Out

Enter

What Is CloudState?
https://cloudstate.io

Overview:
1. Open Source (Apache 2.0) project

What Is CloudState?
https://cloudstate.io

Overview:
1. Open Source (Apache 2.0) project
2. Makes Stateful Serverless applications easy

What Is CloudState?
https://cloudstate.io

Overview:
1. Open Source (Apache 2.0) project
2. Makes Stateful Serverless applications easy
3. Reference implementation for a standard (protocol and spec)

What Is CloudState?
https://cloudstate.io

Overview:
1. Open Source (Apache 2.0) project
2. Makes Stateful Serverless applications easy
3. Reference implementation for a standard (protocol and spec)
4. Let’s you focus on business logic, data model, and workflow

What Is CloudState?
https://cloudstate.io

What Is CloudState?
https://cloudstate.io

What Is CloudState?
https://cloudstate.io

Don’t worry about:
1. Managing: Complexities of Distributed and Concurrent systems

What Is CloudState?
https://cloudstate.io

Don’t worry about:
1. Managing: Complexities of Distributed and Concurrent systems
2. Managing: Distributed State—Consistency, Replication, Persistence

What Is CloudState?
https://cloudstate.io

Don’t worry about:
1. Managing: Complexities of Distributed and Concurrent systems
2. Managing: Distributed State—Consistency, Replication, Persistence
3. Managing: Databases, Service Meshes, and other infrastructure

What Is CloudState?
https://cloudstate.io

Don’t worry about:
1. Managing: Complexities of Distributed and Concurrent systems
2. Managing: Distributed State—Consistency, Replication, Persistence
3. Managing: Databases, Service Meshes, and other infrastructure
4. Managing: Message Routing, Scalability, Fail-over & Recovery

What Is CloudState?
https://cloudstate.io

Don’t worry about:
1. Managing: Complexities of Distributed and Concurrent systems
2. Managing: Distributed State—Consistency, Replication, Persistence
3. Managing: Databases, Service Meshes, and other infrastructure
4. Managing: Message Routing, Scalability, Fail-over & Recovery
5. Running & Operating your application

What Is CloudState?
https://cloudstate.io

Technical Highlights:
1. Polyglot: Client libs in JavaScript, Java, Go—with upcoming support for
Python, .NET, Rust, Swift, Scala

What Is CloudState?
https://cloudstate.io

Technical Highlights:
1. Polyglot: Client libs in JavaScript, Java, Go—with upcoming support for
Python, .NET, Rust, Swift, Scala

2. PolyState: Powerful state models—Event Sourcing, CRDTs, Key Value

What Is CloudState?
https://cloudstate.io

Technical Highlights:
1. Polyglot: Client libs in JavaScript, Java, Go—with upcoming support for
Python, .NET, Rust, Swift, Scala

2. PolyState: Powerful state models—Event Sourcing, CRDTs, Key Value
3. PolyDB: Supporting SQL, NoSQL, NewSQL and in-memory replication

What Is CloudState?
https://cloudstate.io

Technical Highlights:
1. Polyglot: Client libs in JavaScript, Java, Go—with upcoming support for
Python, .NET, Rust, Swift, Scala

2. PolyState: Powerful state models—Event Sourcing, CRDTs, Key Value
3. PolyDB: Supporting SQL, NoSQL, NewSQL and in-memory replication
4. Leveraging Akka, gRPC, Knative, GraalVM, running on Kubernetes

What Is CloudState?
https://cloudstate.io

Cloudstate Architecture

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Cloudstate Architecture

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

User Function
(JavaScript, Go, Java,…)

Cloudstate Architecture
User Function

(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Cloudstate Proxy
(Akka Sidecar)

User Function
(JavaScript, Go, Java,…)

Cloudstate Architecture
User Function

(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Cloudstate Proxy
(Akka Sidecar)

User Function
(JavaScript, Go, Java,…)

Cloudstate Architecture
User Function

(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Cloudstate Proxy
(Akka Sidecar)

User Function
(JavaScript, Go, Java,…)

Cloudstate Architecture
User Function

(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

gRPC

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Cloudstate Proxy
(Akka Sidecar)

User Function
(JavaScript, Go, Java,…)

Cloudstate Architecture
User Function

(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Datastore
(Cassandra, Postgres, Spanner,…)

gRPC

Kubernetes PodUser Function
(JavaScript, Go, Java,…)

Kubernetes PodUser Function
(JavaScript, Go, Java,…)

Kubernetes PodUser Function
(JavaScript, Go, Java,…)

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Akka Cluster

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Akka Cluster

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

HTTP

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Akka Cluster

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

HTTP

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Akka Cluster

gRPC

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

HTTP

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Akka Cluster

gRPC

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

HTTP

Gossip, State replication, Routing

Gossip, State replication, Routing

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Akka Cluster

Datastore
(Cassandra, Postgres, Spanner,…)

gRPC

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

HTTP

Gossip, State replication, Routing

Gossip, State replication, Routing

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Akka Cluster

Datastore
(Cassandra, Postgres, Spanner,…)

gRPC

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

gRPC

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

HTTP

gRPC

Gossip, State replication, Routing

Gossip, State replication, Routing

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Akka Cluster

Datastore
(Cassandra, Postgres, Spanner,…)

gRPC

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

gRPC

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

gRPC

HTTP

gRPC

Events

Gossip, State replication, Routing

Gossip, State replication, Routing

CloudState helps you with
(when being a managed service)

• Pay-as-you-go:
• On-demand Instance Creation, Passivation, and Failover
• Autoscaling—up and down

CloudState helps you with
(when being a managed service)

• Pay-as-you-go:
• On-demand Instance Creation, Passivation, and Failover
• Autoscaling—up and down

• ZeroOps:
• Automation of Message Routing and Delivery
• Automation of State Management

• Service of Record—In-Memory Cluster Sharding, Co-location of Data & Processing
• Coordination State—Replication, Consistency

• Automation of Deployment, Provisioning, Upgrades

CloudState helps you with
(when being a managed service)

Akka Cluster state management

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing

https://akka.io

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing

https://akka.io

User FunctionUser Function

User Function

User Function

User Function

User Function

User Function

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing

• State Sharding & Routing on Entity Key

https://akka.io

User FunctionUser Function

User Function

User Function

User Function

User Function

User Function

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing

• State Sharding & Routing on Entity Key

(Key, State)

https://akka.io

User FunctionUser Function

User Function

User Function

User Function

User Function

User Function

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing

• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)

(Key, State)

https://akka.io

User FunctionUser Function

User Function

User Function

User Function

User Function

User Function

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing

• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)

(Key, State)

(Key, State)

https://akka.io

User FunctionUser Function

User Function

User Function

User Function

User Function

User Function

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing

• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)
• Co-Location of State & Processing

(Key, State)

(Key, State)

https://akka.io

User FunctionUser Function

User Function

User Function

User Function

User Function

User Function

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing

• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)
• Co-Location of State & Processing
• Backed by Event Log

(Key, State)

(Key, State)

https://akka.io

User FunctionUser Function

User Function

User Function

User Function

User Function

User Function

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Event Log

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing

• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)
• Co-Location of State & Processing
• Backed by Event Log

(Key, State)

(Key, State)

https://akka.io

User FunctionUser Function

User Function

User Function

User Function

User Function

User Function

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Event Log

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing

• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)
• Co-Location of State & Processing
• Backed by Event Log
• Automatic Failover, Rehydration, and

Rebalancing

(Key, State)

(Key, State)

https://akka.io

User FunctionUser Function

User Function

User Function

User Function

User Function

User Function

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Event Log

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing

• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)
• Co-Location of State & Processing
• Backed by Event Log
• Automatic Failover, Rehydration, and

Rebalancing

https://akka.io

User FunctionUser Function

User Function

User Function

User Function

User Function

User Function

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Event Log

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing

• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)
• Co-Location of State & Processing
• Backed by Event Log
• Automatic Failover, Rehydration, and

Rebalancing

https://akka.io

User FunctionUser Function

User Function

User Function

User Function

User Function
User Function

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Event Log

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing

• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)
• Co-Location of State & Processing
• Backed by Event Log
• Automatic Failover, Rehydration, and

Rebalancing
(Key, State)

https://akka.io

User FunctionUser Function

User Function

User Function

User Function

User Function
User Function

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Event Log

Akka Sidecar

Akka Sidecar

Akka Sidecar

• Actor-based Distributed Runtime
• Decentralized Masterless P2P
• Epidemic Gossiping, Self-healing

• State Sharding & Routing on Entity Key
• Forwarding of Requests (if needed)
• Co-Location of State & Processing
• Backed by Event Log
• Automatic Failover, Rehydration, and

Rebalancing
(Key, State)

(Key, State)

https://akka.io

User FunctionUser Function

User Function

User Function

User Function

User Function
User Function

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• In-memory Replication of State
• Gossiping State Changes
• Using CRDTs
• State Merged on Local Node
• Highly Available (N Replicas)
• Very Scalable

https://akka.io

User FunctionUser Function

User Function

User Function

User Function

User Function

User Function

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• In-memory Replication of State
• Gossiping State Changes
• Using CRDTs
• State Merged on Local Node
• Highly Available (N Replicas)
• Very Scalable

(Key, State)

https://akka.io

User FunctionUser Function

User Function

User Function

User Function

User Function

User Function

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• In-memory Replication of State
• Gossiping State Changes
• Using CRDTs
• State Merged on Local Node
• Highly Available (N Replicas)
• Very Scalable

(Key, State)

(Key, State)

(Key, State)

https://akka.io

User FunctionUser Function

User Function

User Function

User Function

User Function

User Function

(Key, State)

(Key, State)

Akka Cluster state management

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Sidecar

• In-memory Replication of State
• Gossiping State Changes
• Using CRDTs
• State Merged on Local Node
• Highly Available (N Replicas)
• Very Scalable

https://akka.io

User FunctionUser Function

User Function

User Function

User Function

User Function

User Function

Cloudstate Uses Better Models

For Distributed State

battle-tested, Yet Constrained, models like:

Cloudstate Uses Better Models

For Distributed State

battle-tested, Yet Constrained, models like:

Cloudstate Uses Better Models

For Distributed State

Event
Sourcing

battle-tested, Yet Constrained, models like:

Cloudstate Uses Better Models

For Distributed State

Event
Sourcing CRDTs

battle-tested, Yet Constrained, models like:

Cloudstate Uses Better Models

For Distributed State

Event
Sourcing CRDTs Key

Value

Event
Sourced
Entities

Happy Path

Event
Sourced
Entities

Happy Path

Command

Event
Sourced
Entities

Happy Path

Command

Event
Sourced
Entities

Happy Path

Command

Event
Sourced
Entities

Happy Path

Command

Command

Event
Log

Event

Event
Sourced
Entities

Happy Path

Command

Command

Event

Event
Log

Event

Event
Sourced
Entities

Happy Path

Command

Command

Event

Event
Log

Event

Event
Sourced
Entities

Happy Path

Command
Memory Image

Event
Sourced
Entities

Happy Path

SAD Path, RECOVER FROM FAILURE

Event
Sourced
Entities

Event
Log

SAD Path, RECOVER FROM FAILURE

Event
Sourced
Entities

Event
Log

REPLAY EventS

SAD Path, RECOVER FROM FAILURE

Event
Sourced
Entities

Event
Log

REPLAY EventS

SAD Path, RECOVER FROM FAILURE

Command

Event
Sourced
Entities

Benefits of

Event Sourcing

Benefits of

Event Sourcing

✴ One single Source of Truth with All history

Benefits of

Event Sourcing

✴ One single Source of Truth with All history

✴ Allows for Memory Image (Durable In-Memory State)

Benefits of

Event Sourcing

✴ One single Source of Truth with All history

✴ Allows for Memory Image (Durable In-Memory State)
✴ Avoids the Object-relational mismatch

Benefits of

Event Sourcing

✴ One single Source of Truth with All history

✴ Allows for Memory Image (Durable In-Memory State)
✴ Avoids the Object-relational mismatch

✴ Allows others to Subscribe to state changes

Benefits of

Event Sourcing

✴ One single Source of Truth with All history

✴ Allows for Memory Image (Durable In-Memory State)
✴ Avoids the Object-relational mismatch

✴ Allows others to Subscribe to state changes

✴ Has good Mechanical sympathy (Single Writer Principle)

Deployment

Serverless

Event Sourcing

User Function/entity

Deployment

Serverless

Event Sourcing

User Function/entity

Deployment

Event Log In

Serverless

Event Sourcing

Command In

User Function/entity

Deployment

Event Log In

Serverless

Event Sourcing

Command In

User Function/entity

Deployment

Reply Out

Event Log In

Serverless

Event Sourcing

Command In

User Function/entity

Deployment

Reply Out

Event Log In Events OUt

Serverless

Event Sourcing

Command In

User Function/entity

Deployment

Reply Out

Event Log In Events OUt

Serverless

Event Sourcing

Convergent & Commutative Replicated Data Types - Shapiro et. al. 2011

Conflict-Free Replicated Data Types

CRDT

Convergent & Commutative Replicated Data Types - Shapiro et. al. 2011

Conflict-Free Replicated Data Types

CRDT
Strong Eventual Consistency
Replicated & Decentralized
Highly Available & Very Scalable
Data Types Contain Resolution Logic
Always Converge Correctly

Convergent & Commutative Replicated Data Types - Shapiro et. al. 2011

Conflict-Free Replicated Data Types

Data types
Counters
Registers

Sets
Maps

Graphs
(that all compose)

CRDT
Strong Eventual Consistency
Replicated & Decentralized
Highly Available & Very Scalable
Data Types Contain Resolution Logic
Always Converge Correctly

Convergent & Commutative Replicated Data Types - Shapiro et. al. 2011

Conflict-Free Replicated Data Types

CRDTs are…

CRDTs are…
Associative
Batch-insensitive

(grouping doesn't matter)
a+(b+c)=(a+b)+c

CRDTs are…
Associative
Batch-insensitive

(grouping doesn't matter)
a+(b+c)=(a+b)+c

Commutative
Order-insensitive

(order doesn't matter)
a+b=b+a

CRDTs are…
Associative
Batch-insensitive

(grouping doesn't matter)
a+(b+c)=(a+b)+c

Commutative
Order-insensitive

(order doesn't matter)
a+b=b+a

Idempotent
Retransmission-insensitive
(duplication does not matter)

a+a=a

Deployment

Serverless

CRDTs

User Function/entity

Deployment

Serverless

CRDTs

User Function/entity

Deployment

States/Deltas IN

Serverless

CRDTs

Message In

User Function/entity

Deployment

States/Deltas IN

Serverless

CRDTs

Message In

User Function/entity

Deployment

Message Out

States/Deltas IN

Serverless

CRDTs

Message In

User Function/entity

Deployment

Message Out

States/Deltas IN States/deltas OUT

Serverless

CRDTs

Message In

User Function/entity

Deployment

Message Out

States/Deltas IN States/deltas OUT

Serverless

CRDTs

Deployment

Serverless

CRUD
Using KeyValue

User Function/entity

Deployment

Serverless

CRUD
Using KeyValue

User Function/entity

Deployment

Snapshot In
(By Entity KEy)

Serverless

CRUD
Using KeyValue

Message In

User Function/entity

Deployment

Snapshot In
(By Entity KEy)

Serverless

CRUD
Using KeyValue

Message In

User Function/entity

Deployment

Message Out

Snapshot In
(By Entity KEy)

Serverless

CRUD
Using KeyValue

Message In

User Function/entity

Deployment

Message Out

Snapshot In
(By Entity KEy)

Snapshot out
(By Entity Key)

Serverless

CRUD
Using KeyValue

Example
CRDT Entity

Presence function in a chat app
github.com/cloudstateio/samples-java-chat

Protobuf Descriptor

syntax = "proto3";

import "cloudstate/entity_key.proto";

package cloudstate.samples.chat.presence;

option java_package = "io.cloudstate.samples.chat.presence";

option java_outer_classname = "PresenceProtos";

Protobuf Descriptor

syntax = "proto3";

import "cloudstate/entity_key.proto";

package cloudstate.samples.chat.presence;

option java_package = "io.cloudstate.samples.chat.presence";

option java_outer_classname = "PresenceProtos";

message User {

 "// Entity key is the unique entity/function identifier

 string name = 1 [(.cloudstate.entity_key) = true];

}

message OnlineStatus {

 bool online = 1;

}

message Empty {

}

Protobuf Descriptor

syntax = "proto3";

import "cloudstate/entity_key.proto";

package cloudstate.samples.chat.presence;

option java_package = "io.cloudstate.samples.chat.presence";

option java_outer_classname = "PresenceProtos";

message User {

 "// Entity key is the unique entity/function identifier

 string name = 1 [(.cloudstate.entity_key) = true];

}

message OnlineStatus {

 bool online = 1;

}

message Empty {

}

service Presence {

 "// Connect the given user

 rpc Connect(User) returns (stream Empty);

 "// Monitor the online status of the given user

 rpc Monitor(User) returns (stream OnlineStatus);

}

Protobuf Descriptor

CRDT Entity

 @CrdtEntity

 public class PresenceEntity {

 private final Vote vote; "// Vote CRDT for this user. It’s auto replicated

 "// and keeps track how each node has voted

 private final String username; "// Entity Key (for sharding and routing)

 public PresenceEntity(

 Optional<Vote> vote, CrdtCreationContext ctx, @EntityId String username) { … }

 }

CRDT Entity

 @CrdtEntity

 public class PresenceEntity {

 private final Vote vote; "// Vote CRDT for this user. It’s auto replicated

 "// and keeps track how each node has voted

 private final String username; "// Entity Key (for sharding and routing)

 public PresenceEntity(

 Optional<Vote> vote, CrdtCreationContext ctx, @EntityId String username) { … }

 }

 public static void main(String""... args) {

 new CloudState()

.registerCrdtEntity(…)

.start();

 }

CRDT Entity

 @CrdtEntity

 public class PresenceEntity {

 private final Vote vote; "// Vote CRDT for this user. It’s auto replicated

 "// and keeps track how each node has voted

 private final String username; "// Entity Key (for sharding and routing)

 public PresenceEntity(

 Optional<Vote> vote, CrdtCreationContext ctx, @EntityId String username) { … }

 }

 "// Here we implement the Protobuf Service API, our business logic

 @CommandHandler

 public void connect(StreamedCommandContext<Empty> ctx) {

 vote.vote(true);

 …

 }

 public static void main(String""... args) {

 new CloudState()

.registerCrdtEntity(…)

.start();

 }

CRDT Entity

 @CrdtEntity

 public class PresenceEntity {

 private final Vote vote; "// Vote CRDT for this user. It’s auto replicated

 "// and keeps track how each node has voted

 private final String username; "// Entity Key (for sharding and routing)

 public PresenceEntity(

 Optional<Vote> vote, CrdtCreationContext ctx, @EntityId String username) { … }

 }

 "// Here we implement the Protobuf Service API, our business logic

 @CommandHandler

 public void connect(StreamedCommandContext<Empty> ctx) {

 vote.vote(true);

 …

 }

 public static void main(String""... args) {

 new CloudState()

.registerCrdtEntity(…)

.start();

 }

CRDT Entity

 @CommandHandler

 public OnlineStatus monitor(StreamedCommandContext<OnlineStatus> ctx) {

 ctx.onChange(change "-> {

 …

 });

 …

 }

Run in Kubernetes

Install Cloudstate
kubectl create namespace cloudstate

Run in Kubernetes

Install Cloudstate
kubectl create namespace cloudstate

kubectl apply -n cloudstate -f https:"//github.com/
cloudstateio/cloudstate/releases/download/v0.4/
cloudstate-0.4.yaml

Run in Kubernetes

Install Cloudstate
kubectl create namespace cloudstate

kubectl apply -n cloudstate -f https:"//github.com/
cloudstateio/cloudstate/releases/download/v0.4/
cloudstate-0.4.yaml

Run in Kubernetes

Install our Presence app and Gateway
kubectl apply -f https:"//raw.githubusercontent.com/
cloudstateio/samples-java-chat/master/deploy/
presence.yaml

Install Cloudstate
kubectl create namespace cloudstate

kubectl apply -n cloudstate -f https:"//github.com/
cloudstateio/cloudstate/releases/download/v0.4/
cloudstate-0.4.yaml

Run in Kubernetes

Install our Presence app and Gateway
kubectl apply -f https:"//raw.githubusercontent.com/
cloudstateio/samples-java-chat/master/deploy/
presence.yaml

kubectl apply -f https:"//raw.githubusercontent.com/
cloudstateio/samples-java-chat/master/deploy/
gateway.yaml

Install Cloudstate
kubectl create namespace cloudstate

kubectl apply -n cloudstate -f https:"//github.com/
cloudstateio/cloudstate/releases/download/v0.4/
cloudstate-0.4.yaml

Run in Kubernetes

Install our Presence app and Gateway
kubectl apply -f https:"//raw.githubusercontent.com/
cloudstateio/samples-java-chat/master/deploy/
presence.yaml

kubectl apply -f https:"//raw.githubusercontent.com/
cloudstateio/samples-java-chat/master/deploy/
gateway.yaml

Scale up the app to 3 nodes

kubectl scale deploy/presence-deployment "--replicas 3

Join Us
Try Out

The Next Generation
Stateful Serverless

cloudstate.io

