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“We predict that Serverless Computing will grow
to dominate the future of Cloud Computing.”

Cloud computing simplified: a Berkeley view on serverless computing
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FAAS

throughput is key
completed in a short time

Embarrassingly parallel processing tasks

Low traffic applications
Stateless web applications
Orchestration functions
Composing chains of functions

Job scheduling
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FAAS: HARD T0 BUILD

expensive to lose computational context

Durable state “somewhere else”

No co-location

No direct addressability
managing & coordinating distributed state
modelling data consistency guarantees
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Managing in-memory durable session state across individual requests
Low-latency serving of dynamic in-memory models
Real-time stream processing

Distributed resilient transactional workflows

Shared collaborative workspaces

Leader election, counting, voting
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Stateful long-lived addressable virtual components

Options for distributed coordination and communication patterns
Options for managing distributed state reliably at scale
Intelligent adaptive placement of stateful functions

Predictable performance, latency, and throughput

Ways of managing end-to-end guarantees and correctness
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UNCONSTRAINED

DATABASE ACCESS

MAKES IT HARD TO

AUTOMATE
OPERATIONS




“Freedom Is not so much the abhsence
of restrictions as finding the right ones,
the liberating restrictions.”
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CLOUDSTATE

https://cloudstate.io

Open Source
Makes Stateful Serverless easy
Reference implementation
focus on business logic datamodel  workflow
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Complexities  Distributed  Concurrent

Distributed State  Consistency, Replication, Persistence

Databases, Service Meshes,

Message Routing, Scalability, Fail-over Recovery
Running Operating
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CLOUDSTATE

https://cloudstate.io
Polyglot: JavaScript, Java, Go
Python, .NET, Rust, Swift, Scala
PolyState: Event Sourcing, CRDTs, Key Value
PolyDB: SAL, NoSQL, NewSQL

Akka, gRPC, Knative, GraalVM, Kubernetes
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HELPS YOU WITH

Pay-as-you-go:
Instance Creation Passivation Failover

Autoscaling

LeroOps:
Message Routing and Delivery

State Management

Service of Record Cluster Sharding, Co-location of Data & Processing
Coordination State

Deployment, Provisioning, Upgrades
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CRDTs are

Batch-insensitive Order-insensitive  Retransmission-insensitive
(grouping doesn't matter) (order doesn't matter) (duplication does not matter)
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PRESENCE FUNCTION IN A GHAT APP

java-chat

github.com/cloudstateio/samples
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syntax = "proto3"; Protobuf Descriptor
import "cloudstate/entity_key.proto"; P

package cloudstate.samples.chat.presence;

option java_package = "io.cloudstate.samples.chat.presence";
option java_outer_classname = "PresenceProtos";




syntax = "proto3"; Protobuf Descriptor
import "cloudstate/entity_key.proto"; P

package cloudstate.samples.chat.presence;

option java_package = "io.cloudstate.samples.chat.presence";
option java_outer_classname = "PresenceProtos";

message User {
// Entity key is the unique entity/function identifier
string name = 1 [(.cloudstate.entity_key) = truel;

}

message OnlineStatus {
bool online = 1;

}

message Empty {

}.




syntax = "proto3"; Protobuf Descriptor
import "cloudstate/entity_key.proto"; P

package cloudstate.samples.chat.presence;

option java_package = "io.cloudstate.samples.chat.presence";
option java_outer_classname = "PresenceProtos";

message User {
// Entity key is the unique entity/function identifier
string name = 1 [(.cloudstate.entity_key) = truel;

}

message OnlineStatus {
bool online = 1;

}

message Empty {

}.

service Presence {

// Connect the given user
rpc Connect(User) returns (stream Empty);

// Monitor the online status of the given user
rpc Monitor(User) returns (stream OnlineStatus);

}
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public class PresenceEntity {
private final Vote vote; // Vote CRDT for this user. It’s auto replicated
// and keeps track how each node has voted
private final String username; // Entity Key (for sharding and routing)

public PresenceEntity(
Optional<Vote> vote, CrdtCreationContext ctx, @EntityId String username) { .. }
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// Vote CRDT for this user. It’s auto replicated
// and keeps track how each node has voted

private final String username; // Entity Key (for sharding and routing)

@CrdtEntity
public class PresenceEntity {

private final Vote vote;

public PresenceEntity(
Optional<Vote> vote, CrdtCreationContext ctx, @EntityId String username) { .. }

public static void main(String... args) {
new CloudState()
.registerCrdtEntity(..)

.start();

}

// Here we implement the Protobuf Service API, our business logic

@CommandHandler
public void connect(StreamedCommandContext<Empty> ctx) {

vote.vote(true);




CRDT Entity

// Vote CRDT for this user. It’s auto replicated
// and keeps track how each node has voted

private final String username; // Entity Key (for sharding and routing)

@CrdtEntity
public class PresenceEntity {

private final Vote vote;

public PresenceEntity(
Optional<Vote> vote, CrdtCreationContext ctx, @EntityId String username) { .. }

public static void main(String... args) {
new CloudState()
.registerCrdtEntity(..)

.start();

}

// Here we implement the Protobuf Service API, our business logic

@CommandHandler
public void connect(StreamedCommandContext<Empty> ctx) {

vote.vote(true);

} ”

@CommandHandler
public OnlineStatus monitor(StreamedCommandContext<OnlineStatus> ctx) {

ctx.onChange(change — {
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# Install Cloudstate Run in Kubernetes

Kubectl create namespace cloudstate

kubectl apply -n cloudstate -f https://github.com/
cloudstateio/cloudstate/releases/download/v0.4/
cloudstate-0.4.yaml

# Install our Presence app and Gateway
kubectl apply -f https://raw.githubusercontent.com/

cloudstateio/samples-java-chat/master/deploy/
presence.yaml

kubectl apply -f https://raw.githubusercontent.com/
cloudstateio/samples-java-chat/master/deploy/

gateway.yaml

# Scale up the app to 3 nodes
kubectl scale deploy/presence-deployment —--replicas 3
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