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“We predict that Serverless Computing will grow 
to dominate the future of Cloud Computing.”

- Berkeley CS Department

Cloud computing simplified: a Berkeley view on serverless computing
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good use-cases
For FaaS?

1. Embarrassingly parallel processing tasks—invoked on demand & intermittently, 
examples include: image processing, object recognition, log analysis 

2. Low traffic applications—enterprise IT services, and spiky workloads 
3. Stateless web applications—serving static content form S3 (or similar) 
4. Orchestration functions—integration/coordination of calls to third-party services 
5. Composing chains of functions—stateless workflow management, connected via 
data dependencies 

6. Job scheduling—CRON jobs, triggers, etc.

Use-cases where throughput is key rather than low latency  
and requests can be completed in a short time window
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1. Functions are stateless, ephemeral, short-lived:  
expensive to lose computational context & rehydrate 

2. Durable state is always “somewhere else” 
3. No co-location of state and processing  
4. No direct addressability—all communication over external storage 
5. Limited options for managing & coordinating distributed state 
6. Limited options for modelling data consistency guarantees

FAAS: Hard to build  
General-Purpose Applications





State



We Need Serverless Support For...



We Need Serverless Support For...

In short:  

General-purpose  

applications



• Managing in-memory durable session state across individual requests 
E.g. User Sessions, Shopping Carts, Caching

We Need Serverless Support For...

In short:  

General-purpose  

applications



• Managing in-memory durable session state across individual requests 
E.g. User Sessions, Shopping Carts, Caching

• Low-latency serving of dynamic in-memory models 
E.g. Serving of Machine Learning Models

We Need Serverless Support For...

In short:  

General-purpose  

applications



• Managing in-memory durable session state across individual requests 
E.g. User Sessions, Shopping Carts, Caching

• Low-latency serving of dynamic in-memory models 
E.g. Serving of Machine Learning Models

• Real-time stream processing 
E.g. Recommendation, Anomaly Detection, Prediction Serving

We Need Serverless Support For...

In short:  

General-purpose  

applications



• Managing in-memory durable session state across individual requests 
E.g. User Sessions, Shopping Carts, Caching

• Low-latency serving of dynamic in-memory models 
E.g. Serving of Machine Learning Models

• Real-time stream processing 
E.g. Recommendation, Anomaly Detection, Prediction Serving

• Distributed resilient transactional workflows 
E.g. Saga Pattern, Workflow Orchestration, Rollback/Compensating Actions

We Need Serverless Support For...

In short:  

General-purpose  

applications



• Managing in-memory durable session state across individual requests 
E.g. User Sessions, Shopping Carts, Caching

• Low-latency serving of dynamic in-memory models 
E.g. Serving of Machine Learning Models

• Real-time stream processing 
E.g. Recommendation, Anomaly Detection, Prediction Serving

• Distributed resilient transactional workflows 
E.g. Saga Pattern, Workflow Orchestration, Rollback/Compensating Actions

• Shared collaborative workspaces 
E.g. Collaborative Document Editing, Blackboards, Chat Rooms

We Need Serverless Support For...

In short:  

General-purpose  

applications



• Managing in-memory durable session state across individual requests 
E.g. User Sessions, Shopping Carts, Caching

• Low-latency serving of dynamic in-memory models 
E.g. Serving of Machine Learning Models

• Real-time stream processing 
E.g. Recommendation, Anomaly Detection, Prediction Serving

• Distributed resilient transactional workflows 
E.g. Saga Pattern, Workflow Orchestration, Rollback/Compensating Actions

• Shared collaborative workspaces 
E.g. Collaborative Document Editing, Blackboards, Chat Rooms

• Leader election, counting, voting 
…and other distributed systems patterns/protocols for coordination

We Need Serverless Support For...

In short:  

General-purpose  

applications
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1. Stateful long-lived addressable virtual components 
Actors

2. Options for distributed coordination and communication patterns 
Pub-Sub, Point-To-Point, Broadcast—CRDTs, Sagas, etc.

3. Options for managing distributed state reliably at scale 
Ranging from strong to eventual consistency (durable/ephemeral)

4. Intelligent adaptive placement of stateful functions 
Physical co-location of state and processing, sharding, and sticky routing

5. Predictable performance, latency, and throughput 
In startup time, communication/coordination, and storage of data

6. Ways of managing end-to-end guarantees and correctness

Technical Requirements
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“Freedom is not so much the absence 
of restrictions as finding the right ones, 

the liberating restrictions.”
- Timothy keller
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Overview:
1. Open Source (Apache 2.0) project
2. Makes Stateful Serverless applications easy
3. Reference implementation for a standard (protocol and spec)
4. Let’s you focus on business logic, data model, and workflow

What Is CloudState?
https://cloudstate.io



What Is CloudState?
https://cloudstate.io



What Is CloudState?
https://cloudstate.io

Don’t worry about: 
1. Managing: Complexities of Distributed and Concurrent systems



What Is CloudState?
https://cloudstate.io

Don’t worry about: 
1. Managing: Complexities of Distributed and Concurrent systems
2. Managing: Distributed State—Consistency, Replication, Persistence



What Is CloudState?
https://cloudstate.io

Don’t worry about: 
1. Managing: Complexities of Distributed and Concurrent systems
2. Managing: Distributed State—Consistency, Replication, Persistence
3. Managing: Databases, Service Meshes, and other infrastructure



What Is CloudState?
https://cloudstate.io

Don’t worry about: 
1. Managing: Complexities of Distributed and Concurrent systems
2. Managing: Distributed State—Consistency, Replication, Persistence
3. Managing: Databases, Service Meshes, and other infrastructure
4. Managing: Message Routing, Scalability, Fail-over & Recovery



What Is CloudState?
https://cloudstate.io

Don’t worry about: 
1. Managing: Complexities of Distributed and Concurrent systems
2. Managing: Distributed State—Consistency, Replication, Persistence
3. Managing: Databases, Service Meshes, and other infrastructure
4. Managing: Message Routing, Scalability, Fail-over & Recovery
5. Running & Operating your application
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Technical Highlights:
1. Polyglot: Client libs in JavaScript, Java, Go—with upcoming support for 
Python, .NET, Rust, Swift, Scala

2. PolyState: Powerful state models—Event Sourcing, CRDTs, Key Value
3. PolyDB: Supporting SQL, NoSQL, NewSQL and in-memory replication
4. Leveraging Akka, gRPC, Knative, GraalVM, running on Kubernetes

What Is CloudState?
https://cloudstate.io
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• Pay-as-you-go: 
• On-demand Instance Creation, Passivation, and Failover 
• Autoscaling—up and down

• ZeroOps: 
• Automation of Message Routing and Delivery 
• Automation of State Management 

• Service of Record—In-Memory Cluster Sharding, Co-location of Data & Processing  
• Coordination State—Replication, Consistency 

• Automation of Deployment, Provisioning, Upgrades

CloudState helps you with 
(when being a managed service)
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For Distributed State
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✴ One single Source of Truth with All history

✴ Allows for Memory Image (Durable In-Memory State)
✴ Avoids the Object-relational mismatch

✴ Allows others to Subscribe to state changes

✴ Has good Mechanical sympathy (Single Writer Principle)
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Highly Available & Very Scalable 
Data Types Contain Resolution Logic 
Always Converge Correctly
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Data types 
Counters 
Registers 

Sets 
Maps 

Graphs 
(that all compose)

CRDT
Strong Eventual Consistency 
Replicated & Decentralized 
Highly Available & Very Scalable 
Data Types Contain Resolution Logic 
Always Converge Correctly

Convergent & Commutative Replicated Data Types - Shapiro et. al. 2011
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CRDTs are…
Associative 
Batch-insensitive  

(grouping doesn't matter) 
a+(b+c)=(a+b)+c

Commutative 
Order-insensitive  

(order doesn't matter) 
a+b=b+a 

Idempotent 
Retransmission-insensitive  
(duplication does not matter) 

a+a=a
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Example 
CRDT Entity

Presence function in a chat app
github.com/cloudstateio/samples-java-chat



Protobuf Descriptor



syntax = "proto3";

import "cloudstate/entity_key.proto";


package cloudstate.samples.chat.presence;


option java_package = "io.cloudstate.samples.chat.presence";

option java_outer_classname = "PresenceProtos";

Protobuf Descriptor



syntax = "proto3";

import "cloudstate/entity_key.proto";


package cloudstate.samples.chat.presence;


option java_package = "io.cloudstate.samples.chat.presence";

option java_outer_classname = "PresenceProtos";

message User {

  "// Entity key is the unique entity/function identifier

  string name = 1 [(.cloudstate.entity_key) = true];

}


message OnlineStatus {

  bool online = 1;

}


message Empty {

}
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syntax = "proto3";

import "cloudstate/entity_key.proto";


package cloudstate.samples.chat.presence;


option java_package = "io.cloudstate.samples.chat.presence";

option java_outer_classname = "PresenceProtos";

message User {

  "// Entity key is the unique entity/function identifier

  string name = 1 [(.cloudstate.entity_key) = true];

}


message OnlineStatus {

  bool online = 1;

}


message Empty {

}


service Presence {


  "// Connect the given user

  rpc Connect(User) returns (stream Empty);

  

  "// Monitor the online status of the given user

  rpc Monitor(User) returns (stream OnlineStatus);

}

Protobuf Descriptor
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 @CrdtEntity

 public class PresenceEntity {

   private final Vote vote;       "// Vote CRDT for this user. It’s auto replicated 

                                  "// and keeps track how each node has voted

   private final String username; "// Entity Key (for sharding and routing)


   public PresenceEntity(

     Optional<Vote> vote, CrdtCreationContext ctx, @EntityId String username) { … }
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 public class PresenceEntity {
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                                  "// and keeps track how each node has voted

   private final String username; "// Entity Key (for sharding and routing)


   public PresenceEntity(

     Optional<Vote> vote, CrdtCreationContext ctx, @EntityId String username) { … }
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 "// Here we implement the Protobuf Service API, our business logic

 @CommandHandler 

 public void connect(StreamedCommandContext<Empty> ctx) {

   vote.vote(true);

   …


   }

   public static void main(String""... args) {

     new CloudState()


.registerCrdtEntity(…)


.start();

   }
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 @CrdtEntity

 public class PresenceEntity {

   private final Vote vote;       "// Vote CRDT for this user. It’s auto replicated 

                                  "// and keeps track how each node has voted

   private final String username; "// Entity Key (for sharding and routing)


   public PresenceEntity(

     Optional<Vote> vote, CrdtCreationContext ctx, @EntityId String username) { … }


 }

 "// Here we implement the Protobuf Service API, our business logic

 @CommandHandler 

 public void connect(StreamedCommandContext<Empty> ctx) {

   vote.vote(true);

   …


   }

   public static void main(String""... args) {

     new CloudState()


.registerCrdtEntity(…)


.start();

   }

CRDT Entity

 @CommandHandler 

 public OnlineStatus monitor(StreamedCommandContext<OnlineStatus> ctx) {

   ctx.onChange(change "-> { 

     … 

   });    

   …


   }
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# Install Cloudstate
kubectl create namespace cloudstate

kubectl apply -n cloudstate -f https:"//github.com/
cloudstateio/cloudstate/releases/download/v0.4/
cloudstate-0.4.yaml

Run in Kubernetes

# Install our Presence app and Gateway 
kubectl apply -f https:"//raw.githubusercontent.com/
cloudstateio/samples-java-chat/master/deploy/
presence.yaml

kubectl apply -f https:"//raw.githubusercontent.com/
cloudstateio/samples-java-chat/master/deploy/
gateway.yaml

# Scale up the app to 3 nodes

kubectl scale deploy/presence-deployment "--replicas 3
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